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Abstract
We consider a rather general class of convection–diffusion equations, involving
dissipation (of possibly fractional order) which competes with quadratic non-
linearities on the regularity of the overall equation. This includes as prototype
models, Burgers’ equation, the Navier–Stokes equations, the surface quasi-
geostrophic equations and the Keller–Segel model for chemotaxis. Here we
establish a Petrowsky type parabolic estimate of such equations which entail a
precise time decay of higher order Sobolev norms for this class of equations. To
this end, we introduce as a main new tool, an ‘infinite-order energy functional’,
E(t) := ∑∞

n=0 αnt
n‖u(·, t)‖Ḣnθ+βc with appropriate Sobolev critical regularity

of order βc. It captures the regularizing effect of all higher order derivatives of
u(·, t), by proving—for a careful, problem-dependent choice of weights {αn},
that E(t) is non-increasing in time.

Keywords: convection–diffusion, quadratic nonlinearity, energy functional,
smoothness, Navier–Stokes equations, Keller–Segel equation, QG equation

Mathematics Subject Classification: 35K55, 35B65, 35Qxx

0951-7715/14/030545+18$33.00 © 2014 IOP Publishing Ltd & London Mathematical Society Printed in the UK 545

http://dx.doi.org/10.1088/0951-7715/27/3/545
mailto: abiswas@umbc.edu
mailto: tadmor@cscamm.umd.edu


Nonlinearity 27 (2014) 545 A Biswas and E Tadmor

1. Introduction

Consider a linear evolution equation

ut + Au = 0, u(0) = u0 ∈ L2(Rd), (1.1)

where A := (−�)ϑ . It is well known that higher Sobolev norms obey the decay estimate3

‖u‖2
Ḣm := ‖(−�)m/2u(t)‖2 � cm

tm/ϑ
‖u0‖2 for all t > 0. (1.2)

In fact, (1.1) is said to be parabolic of order ϑ in the sense of Petrowsky [37], if the
estimate above holds. Inequality (1.2) provides both a decay estimate for the higher Sobolev
(semi-)norms for large times and a regularizing effect for L2 initial data. The usual proof of
(1.2) involves Fourier analysis: observing that û(ξ, t) = e−t |ξ |2ϑ

û0(ξ), one obtains

‖u(t)‖2
Ḣnθ =

∫
|ξ |2nϑe−2t |ξ |2ϑ |̂u0(ξ)|2 dξ � cn

tn

∫
|̂u0(ξ)|2 dξ = cn

tn
‖u0‖2. (1.3)

We illustrate a new bootstrap procedure to derive (1.2) which avoids the use of the Fourier
transform, and subsequently, will be generalized to a much larger class of dissipative equations
with quadratic nonlinearities. Set � = (−�)1/2 as the self-adjoint root of the minus Laplacian,
so that equation (1.1) reads

ut = −�2θu. (1.4)

Let {αn � 0}n∈N be a sequence to be determined shortly. ‘Integrating’ the equation in its form
(1.4) against �nθu yields

2αnt
n(�nθu, �nθut ) = 2αnt

n(�nθu, −�nθ�2θu) = −2αnt
n‖�(n+1)ϑu‖2,

and hence

d

dt

[
αnt

n‖�nθu‖2
] =

{
−2α0‖�ϑu‖2, n = 0,

nαnt
n−1‖�nθu‖2 − 2αnt

n‖�(n+1)ϑu‖2, n � 1.
(1.5)

Set α0 = 1. If we now choose the αs recursively, nαn = 2αn−1, then the expression on the
right-hand side of (1.5) amounts to a telescoping sum and we end up with

d

dt

( ∞∑
n=0

2n

n!
tn‖�nθu(·, t)‖2

)
= 0.

We conclude that the infinite-order energy functional4

E(t) =
∞∑

n=0

αnt
n‖�nθu(t)‖2, αn = 2n

n!
, n � 0,

is conserved over time. As a corollary, we recover estimate (1.3),

‖u‖2
Ḣnθ � cn

tn
‖u0‖2, cn = 1

αn

= n!

2n
.

Note that the same result holds, with identical proof, if in the definition of the infinite-
order energy functional, the L2 norm ‖ · ‖ is replaced by any homogeneous Sobolev norm
‖ · ‖Ḣβ , β ∈ R (see (1.8)).

3 Throughout the paper, we use the L2-norm, ‖ · ‖, and we let Ḣ
s , s ∈ R, denote the homogeneous L2-based Sobolev

(potential) spaces Ḣ
s := {u ∈ S ′(Rd ) : ‖u‖

Ḣs := ‖(−�)s/2u‖ < ∞}.
4 Unless otherwise stated, we suppress the spatial dependence of u(·, t) and we only specify the time dependence of
the various energy norms.
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In this paper, we consider a class of convection–diffusion equations of the form

ut + Au = B(u, u), (1.6a)

where A is a dissipative operator of order 2θ

A := (−�)ϑ (1.6b)

and B(·, ·) is a bilinear operator of the form

B(u, v) := R(Su ⊗ T v). (1.6c)

Here R, S, T are Fourier multipliers of homogeneous degree βR, βS and βT , respectively.
These types of nonlinearities are often encountered in many models in physics and biology,
including the prototypical examples of Burgers’ equation, Navier–Stokes (NS) equations, the
surface quasi-geostrophic equation and the Keller–Segel model for chemotaxis.

In some of the above-mentioned examples, the nonlinearity satisfies the skew-symmetry
(B(u, v), v) = 0 which in turn implies that ‖u(t)‖ is non-increasing. Our goal here is to
show that the same non-increasing property holds for an appropriately defined infinite-order
energy functional which contains all the higher order derivatives of the solution. As a corollary,
we show that the regularizing effect of the dissipative term Au in (1.6b) balances the loss of
regularity due to the quadratic nonlinearity B(u, u) in (1.6c) and the Petrowsky type estimate
(1.3) still holds.

In order to do this, we introduce the ‘infinite-order energy functional’

E(t) :=
∞∑

n=0

αnt
n‖(−�)nϑ/2u(t)‖2

Ḣβc
, α0 = 1; (1.7a)

here

βc := βR + βS + βT +
d

2
− 2ϑ, (1.7b)

is the order of ‘critical regularity’ which balances the dissipation (1.6b) versus the quadratic
nonlinearity (1.6c). Thus, for example, in the typical cases of Burgers’ and NS equations
where βR = ϑ = 1 and βS = βT = 0, we find the (usual) critical regularity space of order
βc = d

2 − 1. The functional E(·) contains an appropriately weighted sum of all the higher
order derivatives of u; the choice of the weights {αn} is problem dependent. Our main result,
theorem 3.1, shows that even in the (rather general) nonlinear setting of (1.6), there exists a
proper choice of {αn} such that the corresponding functional E(t) is non-increasing in time
provided ‖u0‖Ḣβc is sufficiently small. This immediately yields Petrowsky type estimates of
type (1.2), namely,

‖u(t)‖2
Ḣnϑ+βc

:= ‖(−�)nϑ/2u(t)‖2
Ḣβc

� 1

αntn
‖u0‖2

Ḣβc
, n � 1. (1.8)

Note that the restriction to ‘small data’ is necessary due to the rather general form of
(1.6); it is well known that the 2D Keller–Segel model for example, corresponding to
(R, S, T ) �→ (∇x, I, ∇x�

−1), ‘blows up’ if ‖u0‖ is sufficiently large [11].
In certain applications it may be more appealing to use an L2-based infinite-order energy

functional instead of the Sobolev-based energy ‖ · ‖Ḣβc in (1.7a), since the former is intimately
related to a ‘physical energy’. In this case, the higher order bounds (1.8) follow from a (single)
lower order decay, consult theorem 3.3. In particular, as noted in remark 3.2, the L2-balance
induced by skew-symmetric B(·, ·)s, implies the higher order decay (1.8), at least for large
enough time, t > t0 > 0. In fact, our method shows that for large time, E(t) = O(‖u(t)‖2).
This observation provides a significant advantage when there is exponential time decay of
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‖u(t)‖ (e.g. in the periodic setting and for certain classes of initial data in the whole space [30]):
one can then leverage the similar behavior of E(t) to conclude that the higher order Sobolev
norms of u(t) decay at exactly the same exponential rate as ‖u(t)‖ does.

As examples of the versatility of our approach, we pursue the specific examples of the
one-dimensional Burgers’ equation, the two- and three-dimensional NS equations, the two-
dimensional surface quasi-geostrophic equations and the two- and three-dimensional Keller–
Segel model of chemotaxis. Higher order decay results for these equations have been previously
obtained in many specific setups and we mention here [26, 32, 34] for the NS equations,
and [8, 13, 14], for the surface quasi-geostrophic equations. More references are found in
section 4. Indeed, there is a host of optimal decay results available in the literature for these
equations which employ different strategies to derive optimal decay rates under different
structural assumptions; a complete list of references will be too long to be quoted here.
We emphasize that our main focus, however, lies in the new approach based on the use of
an infinite-order energy functional: since it is independent of Fourier-based arguments, the
proposed approach enables us to pursue the same unified framework for analysing the time
decay of the large class of dissipative equations with quadratic nonlinearities outlined above.

The organization of the paper is as follows. In section 2 we illustrate our basic technique
on the Burgers’ equation, and in section 3 we provide a general formulation of our result from
which all our applications follow. Section 4 is devoted to the applications of our main results to
the case of the NS equations, the 2D surface quasi-geostrophic equations and the Keller–Segel
model of chemotaxis while in section 5 we provide the proofs of our results. In the appendix,
for completeness, we give details of an existence theorem the particular cases of which, such
as the NS and the Keller–Segel model of chemotaxis, are well known.

2. Burgers’ equation: a warm-up for the nonlinear case

Here, we show how to adapt the real-space approach of section 1 to the nonlinear setting. We
illustrate the general method in the context of the one-dimensional viscous Burgers’ equation,

ut + (u2)x = uxx, (x, t) ∈ R × R+. (2.9)

Theorem 2.1. Let u be a solution of Burgers’ equation (2.9) subject to initial data u0 ∈ L2(R),
such that ‖u0‖

Ḣ
− 1

2
is sufficiently small. Then, there exists an adequate choice of constants

{αn > 0}n∈N (depending on ‖u0‖
Ḣ

− 1
2
), such that the infinite-order energy functional,

E(t) :=
∞∑

n=0

αnt
n‖�nu(t)‖2

Ḣ
− 1

2
, α0 = 1, (2.10)

is non-increasing for all t > 0, and in particular,

‖u(t)‖2

Ḣ
n− 1

2
� 1

αntn
‖u0‖2

Ḣ
− 1

2
. (2.11)

Proof. We first note, consult theorem A.1, that Burgers’ equation (2.9) admits a mild solution,
u(·) ∈ C([0, ∞); Ḣ

− 1
2 ) ∩ L∞

loc((0, ∞); L2(R)). Here, and in all subsequent results, we
will provide formal a priori estimates which can be made rigorous in the usual manner by
establishing uniform bounds on smooth approximate solutions and then passing to the limit.

We begin the proof with the following lemma.
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Lemma 2.2. Let u be a solution of (2.9) and assume that ‖u0‖
Ḣ

− 1
2

is sufficiently small. Then,

for all t > 0,
d

dt
‖u(t)‖2

Ḣ
− 1

2
� −‖�1/2u(t)‖2 and in particular

‖u(t)‖2

Ḣ
− 1

2
� ‖u0‖2

Ḣ
− 1

2
.

Indeed, ‘pairing’ (2.9) against �−1u, we obtain that ‖u‖2

Ḣ
− 1

2
≡ (u, �−1u) satisfies

1

2

d

dt
‖u(t)‖2

Ḣ
− 1

2
+ ‖�1/2u(t)‖2 = −(∂x(u

2), �−1u) = −(�−1∂x(u
2), u).

Using the L2-boundedness of the Hilbert transform �−1∂x followed by Sobolev’s bound
‖u‖L4 � ‖�1/4u‖ and interpolation, we obtain

|(�−1∂x(u
2), u)| � ‖u2‖‖u‖ = ‖u‖2

L4‖u‖ � ‖�1/4u‖2‖u‖ � C‖u‖
Ḣ

− 1
2
‖�1/2u‖2.

Consequently, 1
2 (d/dt)‖u(t)‖2

Ḣ
− 1

2
+‖�1/2u(t)‖2(1−C‖u‖

Ḣ
− 1

2
) � 0. Thus, if ‖u0‖ < (1/2C),

then ‖u(t)‖2

Ḣ
− 1

2
is non-increasing and the lemma follows.

We note in passing that the smallness assumption of ‖u0‖
Ḣ

− 1
2

was required just in order
to insure that ‖u(t)‖

Ḣ
− 1

2
is non-increasing: granted that bound of ‖u(t)‖

Ḣ
− 1

2
, we continue with

the proof of theorem 2.1.

Pairing (2.9) with �2n−1u we obtain

d

dt

[
αnt

n‖�n− 1
2 u(t)‖2

]


� −‖� 1
2 u‖2, n = 0,

=
dissipation-telescoping sum(1.5)︷ ︸︸ ︷

nαnt
n−1‖�n− 1

2 u‖2 − 2αnt
n‖�n+ 1

2 u‖2

−
nonlinearity︷ ︸︸ ︷

2αnt
n(�n− 1

2 u, �n− 1
2 ∂x(u

2)), n � 1.

(2.12)

The case n = 0 with α0 = 1 is just lemma 2.2; the remaining cases of n � 1 require to bound
the nonlinearity in the third term on the right, so that it can be ‘absorbed’ into the carefully
tuned dissipative telescoping sum. To this end, we recall the Kato–Ponce inequality, [18, 20],

‖�β(vw)‖L2 � Cn

2

(‖�βv‖Lp1 ‖w‖Lq1 + ‖v‖Lp2 ‖�βw‖Lq2

)
,

1

pi

+
1

qi

= 1

2
. (2.13)

Using this with β = n− 1
2 , pi = qi = 4 together with the Sobolev inequality ‖z‖L4 � ‖�1/4z‖

and followed by a straightforward interpolation of ‖�n− 1
4 u‖ in terms of ‖�n± 1

2 u‖, yields

‖�n− 1
2 (u2)‖ � Cn‖�n− 1

4 u‖‖� 1
4 u‖ ≡ Cn‖�n− 1

2 u‖ 3
4 ‖�n+ 1

2 u‖ 1
4 ‖� 1

4 u‖. (2.14)

The last bound, (2.14), followed by Young’s inequality imply that the third term on the right
of (2.12) does not exceed

2αnt
n|(∂x�

n− 1
2 u, �n− 1

2 (u2))| � 2αnt
n‖�n+ 1

2 u‖‖�n− 1
2 (u2)‖

� 2αnt
nCn‖� 1

4 u‖‖�n+ 1
2 u‖ 5

4 ‖�n− 1
2 u‖ 3

4

� 2αnt
n

(
1
8
5

‖�n+ 1
2 u‖2 +

1
8
3

(
Cn‖� 1

4 u‖
) 8

3 ‖�n− 1
2 u‖2

)
.

Inserting this back into (2.12) we end up with the recursive estimate,

d

dt

[
αnt

n‖�n− 1
2 u(t)‖2

]
� αnt

n−1

(
n +

3

4
C

8
3
n t‖� 1

4 u‖ 8
3

)
‖�n− 1

2 u‖2 − 3

4
αnt

n‖�n+ 1
2 u‖2.

(2.15)
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We now come to the heart of the matter—a closure of the recursive bounds in (2.15).

A straightforward interpolation bound ‖� 1
4 u‖ � ‖u‖

1
4

Ḣ
− 1

2
‖� 1

2 u‖ 3
4 implies that (recalling

E(t) ∼ α1t‖� 1
2 u‖2 + · · ·),
t‖� 1

4 u‖ 8
3 � ‖u0‖

2
3

Ḣ
− 1

2
t‖� 1

2 u(t)‖2 � C‖u0‖
2
3

Ḣ
− 1

2

1

α1
E(t). (2.16)

The αns will be chosen so that E(t) is decreasing, and in particular, E(t) � ‖u0‖2

Ḣ
− 1

2
. Thus,

starting with α0 = 1, and choosing the αns recursively

αn

(
n +

3

4
C

8
3
n

C

α1
‖u0‖

8
3

Ḣ
− 1

2

)
= 3

4
αn−1, n = 1, 2, . . . ,

we end up with a telescoping sum in (2.15)

d

dt
E(t) � −‖� 1

2 u‖2 (2.17)

+
∞∑

n=1

αnt
n−1

� 3
4 αn−1/αn︷ ︸︸ ︷(

n +
3

4
C

8
3
n

C

α1
‖u0‖

2
3

Ḣ
− 1

2
E(t)

)
‖�n− 1

2 u‖2 − 3

4
αnt

n‖�n+ 1
2 u‖2 � 0,

and the result (2.10) follows. �

Remark 2.3. Observe that a key role of the proof lies in the closure (2.16) where t‖� 1
4 u‖ 8

3

is upper-bounded by t‖� 1
2 u‖2 � E(t). The type of a closure argument will be pursued in a

more general setup below, when interpolation with higher order �su will be closed with an
infinite-order energy functional E(t).

For some applications, it may be more appealing to use the L2-norm for the infinite-
order energy functional since it represents physical ‘energy’. This can be done provided one
makes adequate assumptions on the decay of L2 norm: by (interpolation of) (2.11), the L2

decay sought is of order ‖u(t)‖ � t−1/4. This follows from theorem 2.1 when ‖u0‖
Ḣ

− 1
2

is sufficiently small and is in agreement with the L2-decay of Burgers’ solution for general
∈ L1 ∩ L2-initial data [39]. We have the following result.

Theorem 2.4. Let u be a solution of the Burgers’ equation (2.9) subject to L2-initial data u0,
and assume it satisfies the following L2-decay—there exists a constant possibly dependent on
the initial data, D0 = D(u0), such that

‖u(t)‖ � D0

t1/4
, ∀ t > 0. (2.18)

Then, the infinite-order energy functional,

E(t) :=
∞∑

n=0

αnt
n‖(−�)n/2u(t)‖2, α0 = 1

with αn defined recursively in terms of the Kato–Ponce constants Cns in (2.14),

αn := αn−1

2n + C4
nD

4
0

, n = 1, 2, . . . , (2.19)

is non-increasing in time. In particular, the high-order decay estimate follows

‖u(t)‖2
Ḣn � 1

αntn
‖u0‖2.
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Thus, theorem 2.4 shows that L2-decay implies higher order regularity and faster decay, a
theme that will repeat itself in our examples below.

Proof. The proof of theorem 2.4 closely resembles theorem 2.1, the only difference being in
the way interpolation inequality is used. From (2.9), we have
d

dt

[
αnt

n‖�nu(t)‖2
]

=
{

−2‖�u‖2, n = 0,

nαnt
n−1‖�nu‖2 − 2αnt

n‖�n+1u‖2 − 2αnt
n(�nu, �n∂x(u

2)), n � 1.

(2.20)

As before, using (2.13) (with q1 = p2 = 2) and interpolation inequalities yield

|(�nu, �n∂x(u
2))| � Cn‖u‖‖�n+1u‖3/2‖�nu‖1/2. (2.21)

Combining (2.20) and (2.21), we obtain for n � 1
d

dt

[
αnt

n‖�nu(t)‖2
]

� nαnt
n−1‖�nu‖2 − 2αnt

n‖�n+1u‖2 + 2αnt
nCn‖u‖‖�n+1u‖3/2‖�nu‖1/2

� nαnt
n−1‖�nu‖2 − 1

2
αnt

n‖�n+1u‖2 +
1

2
αnt

nC4
n‖u‖4‖�nu‖2 (2.22a)

� αn

(
n +

1

2
C4

nD
4
0

)
tn−1‖�nu‖2 − 1

2
αnt

n‖�n+1u‖2; (2.22b)

here, (2.22a) follows from Young’s inequality, and (2.22b) follows from (2.18). Consequently,
our choice of αn in (2.19) amounts to a telescoping sum in (2.22),

d

dt

( ∞∑
n=0

αnt
n‖�nu(t)‖2

)
� −2‖�u‖2 +

∞∑
n=1

1

2
αn−1t

n−1‖�nu‖2 − 1

2
αnt

n‖�n+1u‖2 < 0.

This concludes the proof of the theorem. �

3. Main results—the infinite order energy functional

In this section, we extend the ‘infinite-order energy functional’ approach to a general class of
evolution equations (1.6)

ut + (−�)ϑu = B(u, u), B(u, v) = R(Su ⊗ T u),

with applications to several well-known examples.
We consider (1.6) on a closed subspace L ⊂ L2(	) which is invariant to the action of

the Laplacian � and of B(u, v) : L × L �→ L. The operators R, S, T are assumed to be
homogeneous Fourier multipliers, i.e. they map one homogeneous potential space to another
and satisfy the estimates

‖Zw‖Ḣβ � κβ‖w‖Ḣβ+βZ , Z ∈ {R, S, T }, β ∈ R. (3.23)

We will assume that

ϑ > max

{
2

3
βR +

βS + βT

3
,

1

2
βR +

1

2
max{βS, βT },

1

2
max{βS, βT }, 1

4

[
βR + βS + βT +

d

2

]}
,

ϑ < min

{
βR + min{βS, βT } + d, βR +

βS + βT

2
+

d

2

}
.

(3.24)

551



Nonlinearity 27 (2014) 545 A Biswas and E Tadmor

The first condition on ϑ guarantees that the nonlinear term is dominated by a ‘sufficient amount’
of dissipation, while the second is more technical in nature. Some of these requirements can
be circumvented in some specific examples. Many models in physics and biology are of the
form (1.6) where the parameters satisfy (3.24), including the following prototypical cases; see
section 4 for details.

(i) Burgers’ equation: here S = T = I, R = ∂x ; thus with βS = βT = 0, βR = 1.
(ii) NS equations: here S = T = I and R = P∇, where P is the Leray–Hopf projection on

divergence free vector fields; thus βS = βT = 0, βR = 1.
(iii) The surface quasi-geostrophic equation: Here S = I, R = ∇ and T = (−R2, R1) is the

two-dimensional Riesz transform; thus βS = βT = 0, βR = 1.
(iv) The Keller–Segel model for chemotaxis: Here, S = I, T = ∇�−1, R = ∇ with

βS = 0, βT = −1, βR = 1.

Theorem 3.1. Set βc := βR + βS + βT + d
2 − 2ϑ . Let u(·) be the unique strong solution of

(1.6) subject to initial data u0 such that ‖u0‖Ḣβc is sufficiently small. Assume that (3.24) holds.
Then, there exists a choice of constants αn > 0, n = 1, 2, . . . such that the infinite-order energy
functional,

E(t) =
∞∑

n=0

αnt
n‖(−�)nϑ/2u(t)‖2

Ḣβc
, α0 = 1

is non-increasing for all t > 0. In particular, E(t) � E(0) = ‖u0‖2
Ḣβc

and we have the higher
order decay

‖u(t)‖2
Ḣnϑ+βc

� 1

αntn
‖u0‖2

Ḣβc
.

Remark 3.2. In many applications, 0 < βc � ϑ and the nonlinear term is skew-symmetric,
i.e. (B(u, v), v) = 0. In this case, from L2-integration of (1.6) yields

‖u(t)‖2 +
∫ t

0
‖(−�)ϑ/2u(s)‖2 ds � ‖u0‖2.

This implies that ‖u(t)‖2 � ‖u0‖2 and lim inf
t→∞ ‖�u‖2 = 0. By interpolation, we then have

lim inf t→∞ ‖u(t)‖Ḣβc = 0, i.e., the desired smallness condition in theorem 3.1 holds, at least
at certain late time t � t0 > 0. It follows from theorem 3.1 that the modified energy functional

E(t) =
∞∑

n=0

αn(t − t0)
n‖(−�)nϑ/2u(t)‖2

Ḣβc
, t � t0,

is non-increasing for all t > t0 and in particular, E(t) � ‖u(t0)‖2
Ḣβc

.
The same result, with the same proof, holds even if βc � 0, provided there exists γ > βc

such that supt�0 ‖u(t)‖Ḣγ < ∞; see application to the 2D NS equation in section 4.1 as an
example of this line of argument.

In many physically relevant examples, it may be desirable to consider an L2-based energy
functional as the L2-norm represents energy. For simplicity, we consider the skew-symmetric
case.

Theorem 3.3. Consider the evolution equation (1.6) with a skew-symmetric bilinear form,
B(u, v) = R(Su ⊗ T v), with critical regularity of order βc := βR + βS + βT + d

2 − 2ϑ ,
such that (3.24) holds. Let u(·) be a strong solution of (1.6) on (0, T ) subject to L2-initial
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data u0, and assume it satisfies the following decay estimate—there exists a constant possibly
dependent on the initial data, D0 = D(u0) and βc < γ < 2ϑ , such that

sup
0<t<T

t
γ−βc

2ϑ ‖u‖Ḣγ � D0. (3.25)

Then, the infinite-order energy functional (depending on the Kato–Ponce constants Cns (2.13)),

E(t) =
∞∑

n=0

αnt
n‖(−�)nϑ/2u(t)‖2, αn =


1, n = 0,

1

CnD
n
0

, n � 1,

is non-increasing for 0 < t < T . In particular, we have the high-order decay rate

‖u(t)‖2
Ḣnϑ � 1

αntn
‖u0‖2, n = 1, 2, . . . .

Remark 3.4.

(i) In cases where ‖u0‖Ḣβc is sufficiently small, it immediately follows from theorem 3.1 that
(3.25) holds for any γ > βc. In certain cases, (3.25) is satisfied also for large initial data
in Ḣ

βc provided the initial data lies in more restrictive classes; see application to the NS
equations in section 4.1.

(ii) An appropriate modification of [38] or [17] shows that a mild solution satisfying (3.25)
for some T > 0 exists for arbitrary initial data u0 ∈ Ḣ

βc . The proof of existence of such
mild solutions is sketched in the appendix.

4. Applications—dissipation versus quadratic nonlinearity

In this section, we provide several applications of theorems 3.1 and 3.3. Note that on the
time intervals where the infinite-order energy functional is non-increasing, the solution is
smooth (as all higher derivatives are bounded). It is worthwhile to keep in mind that in some
cases, it is known that the solution experiences a finite-time loss of regularity for large initial
data (e.g. Keller–Segel model) or it is not yet known whether a globally regular solution
exists for arbitrarily large initial data (the 3D Navier–Stokes equations). In these cases, either
an appropriate smallness assumption or regularity assumption must be made for our global
regularity result to hold for time t > 0. Otherwise, we show that due to remark 3.2, regularity
holds for large enough time, t � t0. On the other hand, in cases such as the viscous Burgers’ or
2D NS equations where it is well known that globally regular solutions exist for large classes
of initial data, we show that the high-order decay rate stated in theorem 3.3 is valid for the
corresponding large and only ‘slightly’ smaller classes of initial data.

4.1. NS equations

The incompressible NS (NS) equations are given by

ut − �u + ∇p + u · ∇ u = 0, ∇ · u = 0,

where u : R
d × R+ → R

d is the velocity vector field and p is the pressure. The pressure
can be regarded as a Lagrangian multiplier which imposes the divergence free condition.
Due to the presence of pressure, these equations are non-local. It is customary to apply the
Leray projection operator on the NS equations to eliminate pressure. In this case, they can be
rewritten as

ut − �u + P ∇ · (u ⊗ u) = 0, ∇ · u = 0, (4.26)
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where P is the Leray projection operator on divergence free vector fields. Here we have used
the fact that u is divergence free and in the absence of boundary, the Leray projection and the
Laplacian commute. Note that (4.26) is of the form (1.6) with R = P ∇· and T = S = I .

It is well known that when space dimension d = 2, (4.26) admits globally regular
(classical) solution. The question whether or not this is the case when d = 3, is still open.
Due to the work of Leray, it is well known, however, that a weak solution of (4.26) is in
fact regular for large times. Moreover, the 3D NS equations are locally well-posed for initial
data u0 ∈ H

1/2 and a global regular solution exists in cases where the initial data ‖u0‖Ḣ1/2 is
sufficiently small [17]. We have the following results concerning the NS equations, which is
stated in terms of the L2-based infinite-order energy functional.

3D NS equations.

Theorem 4.1. Let u be a Leray–Hopf weak solution of the NS equations on [0, ∞)×R
3 subject

to initial data u0 ∈ L2(R3). Then the following hold.

(i) There exist constants, C, independent of u0, and D0 = D(u0), possibly dependent on
u0, such that for sufficiently large t0 = t0(u0) > 0, the modified infinite-order energy
functional,

E(t) :=
∞∑

n=0

αn(t − t0)
n‖(−�)n/2u(t)‖2, αn :=


1, n = 0,

1

CnD
n
0

, n > 0,
(4.27)

is non-increasing for t > t0. In particular, we have the high-order decay estimate

‖u(t)‖2
Ḣn � 1

αn(t − t0)n
‖u0‖2, t > t0. (4.28)

(ii) Let u(·) be the regular solution on (0, ∞), i.e. u(·) ∈ L∞
loc((0, ∞); H

1), with u0 ∈
H

1/2(R3). Then there exist constants C and D0 = D(u0), such that the infinite-order
energy functional

E(t) :=
∞∑

n=0

αnt
n‖(−�)n/2u(t)‖2, αn :=


1, n = 0,

1

CnD
n
0

, n � 0,
(4.29)

is non-increasing for all t > 0. In particular, estimate (4.28) holds with t0 = 0.
(iii) If u(·) decays at an exponential rate, ‖u(t)‖ � e−λt , then for each n � 1, ‖u(t)‖Ḣn decays

to zero at the same exponential rate, ‖u(t)‖Ḣn � e−λt .

2D NS equations. We recall that the 2D NS equations admit a globally regular solution for
initial data u0 ∈ L2(R2) [2, 7, 25]. In this case, we have the following regularity result.

Theorem 4.2. Let u be the regular solution of (4.26) on (0, ∞) subject to initial data
u0 ∈ L2(R2) ∩ Ḣ

−β(R2), β ∈ (0, 1).

(i) The infinite-order energy functional defined above in (4.29) is non-decreasing in t and
consequently, (4.28) holds with t0 = 0.

(ii) If u(·) decays to zero at an exponential rate ‖u(t)‖ � e−λt , then for each n � 1, ‖u(t)‖Ḣn

converges to zero at the same exponential rate, i.e. ‖u(t)‖Ḣn � e−λt .

In particular, if u0 ∈ Lp(R2) ∩ L2(R2), 1 � p < 2, all the conclusions above hold.
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Remark 4.3. Sharp high-order decay estimates (4.28) for large times, t � 1, were obtained
earlier in [26, 32, 34], under additional assumptions of initial integrability, e.g., u0 ∈ L1 ∩ L2

in [28, 32], or algebraic decay, e.g., ‖u(t)‖L2 � (1 + t)−µ in [33] (the latter follows from the
former—u0 ∈ L1 ∩L2 implies L2 decay with µ = 1/2). In particular, under the assumption of
algebraic decay of ‖u(t)‖L2 , the high-order decay estimate (4.28) with an ‘optimal’ constant
(of the order of nn) was derived in [26] using Gevrey class techniques [15]. The 2D estimate
(4.28) for Lp(R2) ∩ L2(R2), 1 � p < 2 initial data can be found in [26, 32], while the decay
result for u0 ∈ Ḣ

−β ∩ L2(R2) can be found in [3].
Here, the high-order decay estimates (4.28) hold for general L2 data and for all times, as

long as the solution remains regular for t > t0. As before, our main focus is the new approach
based on the use of an infinite-order energy functional, which is independent of Fourier-based
arguments (as in e.g. [33]). This, in turn, enables us to pursue a unified framework for analysis
the time decay of a large class of dissipative equations with quadratic nonlinearities.

4.2. 2D surface quasi-geostrophic equations

The 2D surface quasi-geostrophic equation given by

ηt + u · ∇ η = −(−�)ϑη, 0 < ϑ � 1, u := (−R2, R1)η, (4.30)

where Ri are the two-dimensional Riesz transforms, R̂i (ξ ) = ξi/|ξ |. This equation, which
is of the form (1.6) with R �→ I, S �→ R, T �→ ∇, is an important model in geophysical
fluid dynamics and has received considerable attention recently; see for instance [8, 13] and
the references therein. The subcritical and supercritical cases correspond to dissipation of
order 1

2 < ϑ � 1 and 0 < ϑ < 1
2 respectively. The critical quasi-geostrophic equation,

corresponding to ϑ = 1
2 is the two-dimensional analogue of the 3D NS equations. The global

well-posedness of this equation has been proven only recently [5, 24]. We focus here on the
subcritical case.

Theorem 4.4. Let 2
3 � ϑ � 1, δ0 > 0 and consider the solution η of the 2D QG equation

(4.30) subject to initial data η0 ∈ H
2−2ϑ+δ0(R2). Then, there exist constants D0 = D(η0) and

Cn as in (2.13), such that the infinite-order energy functional,

E(t) :=
∞∑

n=0

αnt
n‖(−�)nϑ/2u(t)‖2

L2 , αn =


1, n = 0,

1

CnD
n
0

, n � 0,

is non-increasing for all t > 0. Moreover, for sufficiently large t , we also have ‖η(t)‖2
Ḣn

=
O(‖η(t)‖2). In particular, if η(t) decays to zero at an exponential rate, ‖η(t)‖ � e−λt , then
so are its spatial derivatives—for each n � 1 ‖η(t)‖Ḣn � e−λt .

4.3. Keller–Segel model

We consider the Keller–Segel model,

ρt = ∇ · (ρu) + �ρ, u = ∇�−1ρ. (4.31)

This model is of the form (1.6) with ϑ �→ 1, R �→ ∇, S �→ I and T �→ ∇�−1. It describes
the collective motion of cells (usually bacteria or amoeba) that are attracted by a chemical
substance and are able to emit it (see [22]). Here ρ is the cell concentration and u is the drift
velocity. There has been a large amount of recent activity devoted to this model (see [10] and the
references therein). In particular, it was shown that the Keller–Segel equation admits a strong
solution if ‖ρ0‖Ld/2(Rd ) is sufficiently small, but on the other hand, the solution experiences a
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finite-time blow-up (converges to Dirac delta) if the initial Ld -norm is larger than a critical
value (see [11, 19] for d = 2). In the framework of sufficiently small data, we have the
following higher order smoothness result.

Theorem 4.5. Consider the d-dimensional Keller–Segel equation (4.31), d = 2, 3, subject
to sufficiently small initial data ρ0 with ‖ρ0‖

Ḣ
d
2 −2 � 1. Then, there exists a global solution

ρ(·, t) such that the infinite-order energy functional (corresponding to (1.7) with ϑ = 1)

E(t) =
∞∑

n=0

αnt
n‖(−�)n/2ρ(t)‖2

Ḣβc
, α0 = 1, βc = d

2
− 2

is non-increasing for all t . In particular, we have the high-order decay estimate

‖ρ(t)‖2

Ḣ
n+ d

2 −2
� 1

αntn
‖ρ0‖2

Ḣ
d
2 −2

. (4.32)

Remark 4.6. The result of higher order decay for the Keller–Segel model is new. For the case
d = 3, the critical space is L3/2 ⊂ Ḣ

− 1
2 , i.e. ‖ρ‖

Ḣ
− 1

2
� ‖ρ‖L3/2 , and hence our smallness

assumption on ‖ρ0‖
Ḣ

− 1
2

is weaker than the usual smallness assumption on ‖ρ‖L3/2 . On the

other hand, in space dimension d = 2, both the critical spaces L1 and Ḣ
−1 are embedded in the

homogeneous Besov space B−2,∞
∞ . Since the embedding of L1 in Ḣ

−1 is no longer true, our
assumption on the smallness of ‖ρ‖Ḣ−1 can be regarded as a different condition guaranteeing
smoothness of solutions, in addition to the decay of their higher Sobolev norms. The new
proof provided here involves only ‘energy techniques’; no use is made of the entropy-based
estimates in e.g. [11].

5. Proofs of main results

Proof of theorem 3.1. Corresponding to the general dissipation operator of order ϑ , we set
� := (−�)ϑ/2 so that ‖u‖Ḣβ = ‖� β

ϑ u‖. We will need the following lemma.

Lemma 5.1. Let u be a solution of (2.9) and assume that ‖u0‖Ḣβc is sufficiently small. Then,

for all t > 0,
d

dt
‖u‖2

Ḣβc
� −‖�βc

ϑ
+1u‖2 and

‖u(t)‖2
Ḣβc

� ‖u0‖2
Ḣβc

.

Proof. Recall that ‖u‖2
Ḣβc

= ‖�βc
ϑ u‖2. Taking L2-inner product of (2.9) with �2 βc

ϑ u, we
obtain for any 0 � ε � 1

1

2

d

dt
‖u‖2

Ḣβc
+ ‖�βc

ϑ
+1u‖2 = (�

βc
ϑ

−εR(Su ⊗ T u), �
βc
ϑ

+εu)

� ‖�βc
ϑ

+εu‖‖�βc
ϑ

+ βR
ϑ

−ε(Su ⊗ T u)‖. (5.33)

Due to (3.24), there exists a choice of constants δ0, ε ∈ R, such that for

ζ0 := βc + βR +
d

2
− εϑ − δ0,

the following inequalities are satisfied:

max{δ0, ζ0} <
d

2
, δ0 + ζ0 > 0, βc � δ0 + βT � βc + ϑ

and βc � ζ0 + βS � βc + ϑ.
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We will need the following inequality for the homogeneous Sobolev norm of the product
of two functions (see [23, 27]), namely,

‖fg‖
Ḣ

ϑ1+ϑ2− d
2

� C‖f ‖Ḣϑ1 ‖g‖Ḣϑ2 , ϑ1 + ϑ2 > 0, ϑi <
d

2
, i = 1, 2. (5.34)

Applying this inequality to (5.33) with ϑ1 = α0, ϑ2 = ζ0 followed by interpolation, we obtain

‖�βc
ϑ

+εu‖‖�βc
ϑ

+ βR
ϑ

−ε(Su ⊗ T u)‖ � ‖�βc+1u‖2‖�βcu‖.
Consequently,

1

2

d

dt
‖u(t)‖2

Ḣβc
+ ‖�βc

ϑ
+1u(t)‖2(1 − C‖u(t)‖Ḣβc ) � 0.

Thus, if ‖u0‖Ḣβc < (1/2C), we conclude that ‖u(t)‖2
Ḣβc

is non-increasing for all t > 0 and the
lemma follows. �

We will now continue with the proof of the theorem. As before, taking inner product and
differentiating, we obtain for n � 1,

d

dt

[
αnt

n‖�nu(t)‖2
Ḣβc

]
� nαnt

n−1‖�nu‖2
Ḣβc

−2αnt
n‖�n+1u‖2

Ḣβc
+ 2αnt

n‖�n+1u‖Ḣβc ‖�n−1+ βc
ϑ R(Su ⊗ T u)‖. (5.35)

� (n + 1)αnt
n−1‖�nu‖2 − αnt

n‖�n+1u‖2 + 2αnt
n(1 + ζ )

1+ζ

1−ζ c
2

1−ζ

n ‖�δu‖ 2
1−ζ ‖�nu‖2

� αn−1t
n−1‖�nu‖2 − αnt

n‖�n+1u‖2.

Note that ‖�n−1+ βc
ϑ R(Su⊗T u)‖ � ‖�n−1+ βc

ϑ
+ βR

ϑ (Su⊗T u)‖. For convenience, we will assume
that n−1+((βc + βR)/ϑ) � 0, n � 1 (for those values of n for which n−1+((βc + βR)/ϑ) < 0,
we may proceed as in proof of lemma 5.1). Applying now (2.13) followed by the Sobolev
inequality, we obtain

‖�n−1+ βc
ϑ

+ βR
ϑ (Su ⊗ T u)‖

� ‖�n−1+ βR+ζ0+βS +βc

ϑ u‖‖�δ0+βT
ϑ u‖ + ‖�n−1+

βR+ζ ′
0+βT +βc

ϑ u‖‖�
δ′0+βS

ϑ u‖, (5.36)

where δ0 + ζ0 = d
2 , δ′

0 + ζ ′
0 = d

2 and they moreover satisfy{
βc < δ0 + βT < 2ϑ, βc < βR + βS + ζ0 < 2ϑ, 0 < δ0 < d

2 ,

βc < δ′
0 + βS < 2ϑ, βc < βR + βT + ζ ′

0 < 2ϑ, 0 < δ′
0 < d

2 .
(5.37)

Such a choice of constants δ0, δ
′
0, ζ0, ζ

′
0 is possible thanks to (3.24). Due to (5.37), it is possible

to choose βc � γ < min{δ0 + βT , δ′
0 + βS} such that

ζ := 1 − γ − βc

ϑ
> max

{
0,

βR + βS + ζ0

ϑ
− 1,

βR + βT + ζ ′
0

ϑ
− 1

}
.

Using (5.36), (5.35), interpolation and subsequently, using Young’s inequality, we obtain

d

dt

[
αnt

n‖�nu‖2
Ḣβc

]
� nαnt

n−1‖�nu‖2
Ḣβc

− 2αnt
n‖�n+1u‖2

Ḣβc
+ 2cnαnt

n‖�n+1u‖Ḣβc ‖�γ

ϑ u‖‖�n+ζ u‖Ḣβc

� αnt
n−1‖�nu‖2

Ḣβc
− 2αnt

n‖�n+1u‖2
Ḣβc

+ 2cnαnt
n‖�n+1u‖1+ζ

Ḣβc
‖�γ

ϑ u‖‖�nu‖1−ζ

Ḣβc

� αnt
n−1‖�nu‖2

Ḣβc
− αnt

n‖�n+1u‖2
Ḣβc

+ 2αnt
n(1 + ζ )

1+ζ

1−ζ c
2

1−ζ

n ‖�γ

ϑ u‖ 2
1−ζ ‖�nu‖2

Ḣβc
.

By interpolating ‖�γ

ϑ u‖ in terms of ‖u‖Ḣβc and ‖�u‖Ḣβc and proceeding exactly as in the
proof of theorem 2.1, we are done. �
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Proof of theorem 3.3. The proof is similar to that of theorems 3.1 and 2.4.

Proof of theorem 4.1. Here A = −� and � = (−�)1/2 corresponding to ϑ = 1, and
R = P∇·, where P is the Leray–Hopf projection operator on divergence free vector fields.
Note that R is a pseudodifferential operator of order one and satisfies (3.23) with βR = 1.
Moreover, we let T = S = I . This choice of operators yield βT = βS = 0 and βc = 1

2 .
We first prove part (i). From remark 3.2, it immediately follows that there exists a regular

solution that satisfies the estimate supt>t0
(t − t0)

1
2 (γ−1/2)‖u(t)‖Ḣγ < ∞ and moreover, it

coincides with the weak solution (see [7]) for all t � t0. Applying theorem 3.3, the claim
immediately follows.
To prove part (ii), note that the decay condition in (3.25) translates into

t
1
2 (γ− 1

2 )‖�γ u(t)‖ � D(u0),
1
2 < γ < 2. (5.38)

Now, since u(t) is a regular solution on (0, T ) for any T > 0 and u0 ∈ Ḣ
1
2 , for any γ > 1

2
and δ > 0, we have (see [17]) that supt∈[δ,T ] ‖u(t)‖Ḣγ < ∞ and consequently, (5.38) holds on
[δ, T ]. To complete the proof of part (ii), we only need to show (5.38) for t ∈ [0, δ] ∪ [T , ∞).
Let t0 as defined in part (i) and T = t0 + 1. Then by theorem A.1, for all t > t0, we have

(t − t0)
1
2 (γ− 1

2 )‖u(t)‖Ḣγ � 2‖u(t0)‖Ḣ1/2 < ε. Thus, noting that sup
t∈[t0+1,∞)

t1/2

(t − t0)1/2
< ∞, it

follows that sup
t∈[t0+1,∞)

t
1
2 (γ− 1

2 )‖u(t)‖Ḣγ , ∞. The requisite condition follows for t ∈ [T , ∞) by

part (i). For t ∈ [0, δ], it follows from theorem A.1 provided δ is sufficiently small.
Finally, we prove part (iii). Let t0 be as defined in part (i). By theorem A.1, for t ∈ [t0, ∞),
the weak solution u(t) is in fact unique and strong and satisfies ‖u(t)‖Ḣ1/2 < ε/2. Thus,
for any t ∈ [t0 + 1, ∞), we can apply theorem 3.1 with initial data u(t − 1) to obtain
sup

s∈[0,1]
s

1
2 (γ−1/2)‖�γ−1/2u(s + t)‖ < ε, and theorem 3.3 implies ‖u(t)‖Ḣn � Cn‖u(t − 1)‖.

This completes the proof. �

Proof of theorem 4.2. The statement in the theorem concerning u0 ∈ Lp(R2) ∩ L2(R2)

follows immediately from the first part in view of the inequality, e.g., [6]

‖u0‖Ḣ−β � ‖u0‖Lp , β = 2

(
1

p
− 1

2

)
, 1 < p � 2.

We will now prove the remainder of the theorem. In this case, βc = 0 and by theorem 3.3, it
is enough to establish

sup
t∈(0,∞)

tγ /2‖u(t)‖Ḣγ < ∞ for some 0 < γ < 1. (5.39)

We first claim that it is enough to establish

lim inf
t→∞ ‖u(t)‖ = 0. (5.40)

Indeed, if (5.40) holds then there exists t0 > 0 such that ‖u(t0)‖ < ε where ε is as in
theorem A.1. Thus, by theorem A.1, we have supt∈(t0,∞)(t − t0)

γ

2 ‖u(t)‖Ḣγ < ∞. Recall that
if the 2D NS solutions satisfy ‖u(ε)‖Hγ < ∞ for some 0 < γ < 1, then for any later time
T > ε, we have sup[ε,T ] ‖u(t)‖Hγ < ∞. Using these two facts as well as the local result (near
t = 0) in theorem A.1, and proceeding as in the proof of part (ii) of theorem 4.1, one can now
easily obtain (5.39).

We now turn to prove (5.40) as well as the L2-decay

‖u(t)‖2 = O
(
t
− β

1+β

)
, (5.41)
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for initial data u0 ∈ Ḣ
−β ∩ L2(R2), β ∈ (0, 1). Arguing along the lines of theorem 4.1, the

energy inequality implies that

lim inf
t→∞ ‖u(t)‖Ḣ1 = 0.

Therefore, if we can establish

sup
t∈[0,∞)

‖u(t)‖Ḣ−β < ∞, (5.42)

then (5.40) follows by interpolation. Subsequently, one can also use (5.42) and the conclusion
(4.28) (with t0 = 0 and n = 1) to establish (5.41).

To establish (5.42), we estimate the nonlinear term: fix 0 < ε < β; then with A = −�

we have,

|(B(u, u), A−βu)| = |(A− 1+β

2 − ε
2 B(u, u), A

1−β

2 + ε
2 u)| (5.43)

� C‖A− β

2 u‖‖A 1
2 − ε

2 u‖‖A 1−β

2 + ε
2 u‖ � C‖A− β

2 u‖‖A 1
2 u‖‖A 1−β

2 u‖.
To obtain the first inequality in (5.43), we note that B(u, u) = ∇ · (u ⊗ u) and then use
(5.34) with d = 2, ϑ1 = −β and ϑ2 = 1 − ε. The last inequality in (5.43) is obtained using
interpolation.

Multiplying (4.26) by A−βu and integrating (in space variables) we obtain

1

2

d

dt
‖A− β

2 u(t)‖2 + ‖A 1−β

2 u(t)‖2 � |(B(u, u), A−βu)|

� C‖A− β

2 u‖‖A 1−β

2 u‖‖A 1
2 u‖ � 1

2
‖A 1−β

2 u‖2 + C‖A− β

2 u‖2‖A 1
2 u‖2;

here, the first inequality follows from (5.43) and the second from Young’s inequality.
Consequently, we have

d

dt
‖A− β

2 u(t)‖2 − C‖A− β

2 u(t)‖2‖A 1
2 u‖2 � 0.

Applying Gronwall’s inequality and recalling that ‖A− β

2 u‖2 = ‖u‖2
Ḣ−β

, we immediately obtain

‖u(t)‖2
Ḣ−β � exp

(
C

∫ t

0
‖A1/2u(s)‖2 ds

)
‖u0‖2

Ḣ−β � exp
(
C‖u0‖2

) ‖u0‖2
Ḣ−β .

The last inequality on the right follows from the well-known Leray energy inequality. This
proves (5.42). �

Proof of theorem 4.4. Here we take A = (−�)ϑ, R = I, T = R, S = ∇ in theorem 3.3.
Thus, βR = 0, βS = 1 and βT = 0. Theorem 3.3 now implies that if for some δ,
(2/ϑ) − 2 < δ < 2, the following condition holds:

t
δ
2 − 1

2 ( 2
ϑ
−2)‖η(t)‖Ḣϑδ � D(η0), (5.44)

then we are done. Note first that due to theorem 2.1 in [8], sup
[0,t0)

‖η‖Ḣ2−2ϑ+δ0 < ∞ for any t0 � 0.

Moreover, βc = 2 − 2ϑ � ϑ for 2
3 � ϑ � 1. Invoking remark 3.2 and proceeding as in the

proof of theorem 4.2, we see that (5.44) holds. The remainder of the proof is similar. �

Proof of theorem 4.5. This follows immediately from theorem 3.1.
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Appendix

Here we show that a mild solution of (1.6) satisfying the deacy assumption (3.25) exists locally
in time; moreover, if the initial data are sufficiently small in appropriate homogeneous Sobolev
space, then this mild solution persists globally in time. For the special case of the NS equation,
the theorem below was first proven by Fujita and Kato [17]. We will sketch the proof for
completeness.

Theorem A.1. Consider the evolution equation (1.6) with ‘critical’ order of regularity βc :=
βR + βS + βT + d

2 − 2θ , subject to initial conditions u0 ∈ Ḣ
βc . Assume that

1

2
{βR + max{βS, βT }} < ϑ < βR +

βS + βT

2
+

d

2
. (A.45)

Then, there exists a classical solution of (1.6), u(·, t), t ∈ (0, T ) which belongs to the class
C([0, T ]; Ḣ

βc ) ∩ C((0, T ); Ḣ
γ ) and satisfies (3.25), for an adequate βc < γ < βc + ϑ .

Moreover, there exists an ε > 0 independent of the initial data u0, such that if ‖u0‖Ḣβc < ε,
then there exists a strong solution global in time u ∈ C([0, ∞); Ḣ

βc ), and the following
estimate holds

sup
t∈(0,∞)

max
{
‖u(t)‖Ḣβc , t

γ−βc
2ϑ ‖u(t)‖Ḣγ

}
� 2‖u0‖Ḣβc .

As an example, the last theorem applies to Burgers’ equation (2.9) with βc = − 1
2 and

ϑ = 1 (so that (A.45) holds 1
2 < ϑ < 3

2 ), and high-order decay follows, t
2γ +1

4 ‖u(t)‖Ḣγ with
γ ∈ (− 1

2 , 1
2 ).

Proof. The proof of this result follows the method of [38] (see also [4]) for the NS equations.
We will use the fixed point method to obtain a mild solution of (1.6), namely,

u(t) = e−tAu0 +
∫ t

0
e−(t−s)AB(u(s), u(s)) ds. (A.46)

Fix any 0 < T � ∞ and note that due to (1.2), for any β ∈ R, it follows that

‖e−tAu0‖Ḣβ � C‖u0‖Ḣβ and t
γ−β

2ϑ ‖e−tAu0‖γ � ‖u0‖Ḣβ , 0 < t < T, γ > β.

(A.47)

Let γ > βc be fixed. Define

M(T ) = M := sup
t∈(0,T )

t
γ−βc

2ϑ ‖e−tAu0‖γ . (A.48)

It is easy to see that M(T ) → 0 as T → 0. To see this, simply note that given any δ > 0,
there exists u′

0 ∈ Ḣ
γ and such that ‖u0 − u′

0‖Ḣβc < δ and by (A.47), for 0 < t < T , we have

t
γ−βc

2ϑ ‖e−tAu0‖Ḣγ � ‖u0 − u′
0‖Ḣγ + t

γ−βc
2ϑ ‖e−tAu′

0‖γ � t
γ−βc

2ϑ ‖u′
0‖γ .

The first term in the right-hand side of the above inequality is less than δ while the second
approaches zero as T → 0.

Consider the linear Banach space

∨ =
{
u ∈ C([0, T ]; Ḣ

βc ) ∩ C((0, T ); Ḣ
γ ) : ‖u‖∨

:= sup
0<t<T

max{‖u(t)‖Ḣβc , t
γ−βc

2ϑ ‖u(t)‖Ḣγ } < ∞
}
,
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and let E ⊂ ∨ be the closed ball,

E := {u ∈ ∨ : ‖u‖∨ � 2M}. (A.49)

For u, v ∈ ∨, we define

S(u, v) :=
∫ t

0
e−(t−s)AB(u(s), v(s)) ds,

and claim that S(·, ·) : ∨ × ∨ → ∨ is a bounded bilinear operator, i.e.

‖S(u, v)‖∨ � ‖u‖∨‖v‖∨. (A.50)

Indeed, note that due to (3.23), (A.47) and (5.34), we have

‖e−(t−s)AB(u, v)‖Ḣγ � (t − s)−
βc+2ϑ−γ

2ϑ ‖u(s)‖Ḣγ ‖v(s)‖Ḣγ

� (t − s)−
(βc+2ϑ−γ )

2ϑ s− γ−βc
ϑ ‖u‖∨‖v‖∨.

Using this and the elementary inequality
∫ t

0
(1/(t − s)asb) ds � t1−a−b, 0 < a, b < 1, one

obtains

t
γ−βc

2ϑ ‖S(u, v)‖Ḣγ � ‖u‖∨‖v‖∨.

The other piece of the norm can be similarly estimated. The rest of the proof is now standard.
One defines a map τ : ∨ → ∨ by the formula τu = e−tAu0 + S(u, u). Using the estimates,
one can show that it is a contractive self-map of E if M is sufficiently small. From the fact
that M(T ) → 0 as T → 0 or (A.47), this holds if either T is small enough or ‖u0‖Ḣβc is
sufficiently small. �
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[25] Lemarié-Rieusset P G 2002 Recent developments in the Navier–Stokes problem (Chapman & Hall/CRC Research

Notes in Mathematics vol 431) (London/Boca Raton, FL: Chapman and Hall/CRC Press)
[26] Oliver M and Titi E 2000 Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes

equations in R
n J. Funct. Anal. 172 1–18

[27] Runst T and Sickel W 1966 Sobolev spaces of fractional order Nemytskij Operators, and Nonlinear Partial
Differential Equations vol 3 (Berlin: de Gruyter & Co)

[28] Schonbek M 1985 L2 decay for weak solutions of the Navier–Stokes equations Arch. Ration. Mech. Anal.
88 209–22

[29] Schonbek M 1986 Large time behavior of solutions to the Navier–Stokes equations Commun. Partial Diff. Eqns
11 733–63

[30] Schonbek M 1991 Lower bounds of rates of decay for solutions to the Navier–Stokes equations J. Am. Math.
Soc. 4 423–49

[31] Schonbek M 1992 Asymptotic behavior of solutions to the three-dimensional Navier–Stokes equations Indiana
Univ. Math. J. 41 809–23

[32] Schonbek M 1995 Large time behavior of solutions to the Navier–Stokes equations in Hm spaces Commun.
Partial Diff. Eqns 20 103–17

[33] Schonbek M 1995 The Fourier splitting method Advances in Geometric Analysis and Continuum Mechanics
(Cambridge, MA: International Press) pp 269–74

[34] Schonbek M and Wiegner M 1996 On the decay of the higher-order norms of the solutions of Navier–Stokes
equations Proc. R. Soc. Edinb. A 126 677–85

[35] Stein E M and Weiss G 1958 Fractional integrals on n-dimensional Euclidean spaces J. Math. Mech. 7 503–14
[36] Tadmor E 1990 Shock capturing by the spectral viscosity method. Spectral and high order methods for partial

differential equations (Como, 1989) Comput. Methods Appl. Mech. Eng. 80 197–208
[37] Taylor M E 1991 Pseudodifferential Operators and Nonlinear PDE (Progress in Mathematics vol 100)

(Basel: Birkhauser)
[38] Weissler F B 1981 The Navier–Stokes initial value problem in Lp Arch. Ration. Mech. Anal. 74 219–30
[39] Wiegner M 1987 Decay results for weak solutions of the Navier–Stokes equations on R

n J. Lond. Math. Soc. 2
35 303–13

562

http://dx.doi.org/10.1016/j.crma.2004.08.011
http://fichier-pdf.fr/2011/12/13/courschine/courschine.pdf
http://dx.doi.org/10.1007/s00205-007-0100-6
http://dx.doi.org/10.3934/dcds.2010.26.1197
http://dx.doi.org/10.1016/0022-1236(89)90015-3
http://dx.doi.org/10.1007/BF00276188
http://arxiv.org/abs/1303.5144
http://dx.doi.org/10.1016/j.jde.2004.10.022
http://dx.doi.org/10.1007/BF01174182
http://dx.doi.org/10.1007/BF01162027
http://dx.doi.org/10.1016/0022-5193(71)90050-6
http://dx.doi.org/10.1090/S0002-9947-1983-0712256-0
http://dx.doi.org/10.1007/s00222-006-0020-3
http://dx.doi.org/10.1006/jfan.1999.3550
http://dx.doi.org/10.1007/BF00752111
http://dx.doi.org/10.1080/03605308608820443
http://dx.doi.org/10.1090/S0894-0347-1991-1103459-2
http://dx.doi.org/10.1512/iumj.1992.41.41042
http://dx.doi.org/10.1080/03605309508821088
http://dx.doi.org/10.1017/S0308210500022976
http://dx.doi.org/10.1016/0045-7825(90)90023-F
http://dx.doi.org/10.1007/BF00280539
http://dx.doi.org/10.1112/jlms/s2-35.2.303

	1. Introduction
	2. Burgers' equation: a warm-up for the nonlinear case
	3. Main results---the infinite order energy functional
	4. Applications---dissipation versus quadratic nonlinearity
	4.1. NS equations
	4.2. 2D surface quasi-geostrophic equations
	4.3. Keller--Segel model

	 3D NS equations.
	 2D NS equations.
	5. Proofs of main results
	 Appendix
	 Acknowledgment
	 References

